国产成人精品a级视频免费观看_欧美日韩人妻精品一区二区三区_另类国产精品一区二区_国产av无码专区亚洲av蜜芽

您當前的位置: 首頁 > 鋼鐵知識

鋼的硬度和淬透性 (中)

作者:董敬(jing)松(song) 時(shi)間:2023-08-11閱讀數:人閱讀

鋼的硬度和淬透性 (中)

從 美(mei)國金屬學(xue)會(hui) 熱處理手冊 上學(xue)習:鋼的硬度和淬透性 (中(zhong))

注:本(ben)文由實驗數據繪制的圖表詳實,實用價值很高。文中(zhong)鋼的牌號以及數據單位不(bu)再做轉換(huan),讀者自己查詢(xun)。文中(zhong)圖表是使用手機軟件(jian)編輯上去的,有些(xie)變形失真,敬請諒解(jie)。

鋼的硬度和淬透性 (中)(圖1)

五、淬透性相關曲線

    由于末端淬火距離與冷卻速度有唯一的對應關系,末端淬火試驗和格羅斯曼淬透性測量的通用性得到了拓展。例如,末端淬火距離應該與 DI 有關,因為兩者都可用來測量產生規定組織(50%馬氏體)的冷卻速度。已知一種鋼的 J 值和淬火冷卻介質的H值,便可以預測任意規格的圓棒的淬硬深度。在許多情況下,測量冷卻速度顯然是不切實際的,或者是不可能的,此時便可以根據冷卻速度與末端淬火距離的唯一對應關系,將末端淬火硬度值與等效冷卻速度以及各種截面尺寸和形狀條件下的淬硬深度聯系起來。
    基本假設是在一根鋼制圓棒的兩個部位上有相同的冷卻速度時,將表現出相同的硬度。例如,圖17所示,為兩種淬透性不同的鋼在末端淬火曲線上的拐點(這里常常對應50%馬氏體)。淬透性較低(圖17 a) 的鋼的端淬曲線在45HRC處有一個拐點,此拐點處的冷卻速度與直徑為100mm (4in) 的圓棒1/2半徑位置(Du/D=0. 5) 處的冷卻速度相對應(圖17 b) .淬透性較高的鋼(圖 17 c) 在45HRC 處也有一個拐點,但是該拐點的末端淬火距離(Jd) 較大(在24/16in的位置)。這相當于以較低的冷卻速度淬火,且采用圖 1-64 d)中的淬火烈度(H值)時,直徑為100mm (4in) 的圓棒可以被淬透。
鋼的硬度和淬透性 (中)(圖2)
鋼的硬度和淬透性 (中)(圖3)
▲圖17  兩種不同淬透性的鋼的末端淬火
淬透性曲線和直徑為100mm(4in)
的同種鋼淬火圓棒橫截面硬度曲線
    這一過程可以延伸到繪制末端淬火等效冷卻速度(Jec) 圖,如圖18所示。該圖的實際應用價值是:不同淬冷烈度(H值)的各種規格的圓棒上的等效位置對應于圓棒末端淬火距離的硬度值。例如,可以利用圖18來說明圖17中兩種不同鋼的硬度。

鋼的硬度和淬透性 (中)(圖4)

▲圖18 末端淬火試樣上等效末端淬火硬度位置與在油、水、鹽水中淬火的圓棒不同位置等效冷卻速度的對應關系(虛線表示直徑為12.7~102mm(0.5~4in)的圓棒中的不同位置,與末端淬火圓棒J8(8/16in)位置等效)
注:為了從末端淬火實驗結果中確定橫截面硬度,在橫坐標上選取適當位置處的末端淬火硬度,向上延伸到需要獲得給定圓棒硬度的淬烈度的曲線上

首先分析圖17 a )所(suo)示(shi)的(de)鋼,要求將(jiang)直徑(jing)為100mm (4in) 的(de)圓棒(圖17 b) 淬(cui)硬至(zhi)1/2半徑(jing)的(de)深(shen)度。達到這一淬(cui)硬深(shen)度要求的(de)淬(cui)冷烈(lie)度可根據圖18 與鋼的(de)末端淬(cui)火曲線(圖17 a) 來確(que)定。末端淬(cui)火曲線的(de)拐點位于(yu)末端淬(cui)火距離12/16in處(chu)。那么,在(zai)圖18 g)中從12/16in的(de)位置向上,要將(jiang)這種鋼淬(cui)硬至(zhi)1/2半徑(jing)的(de)深(shen)度,需(xu)要的(de)淬(cui)冷烈(lie)度約為 H=1. 5。

    以圖17 a)中鋼的淬透性,把直徑為100mm (4in) 的圓棒全部淬硬(中心為50%馬氏體)是不可能的。重復上述步驟,要實現圖 18 中的完全淬透,淬冷烈度將會超過表面理想冷卻(H=1) 的淬冷烈度。但對于淬透性較高的鋼(圖17 c) , 即使淬冷烈度比H=0. 5小一點,也可以將直徑為100mm(4in) 的圓棒(圖17 d) 的中心淬透。淬透性較高的鋼,其末端淬火曲線的拐點處于圓棒距淬火端1. 75in的部位,這(常用圖18 g) 等效于直徑為100mm (4in) 的圓棒的中心硬度,即H=
0. 5以下一點。
    圖18 和圖19  (適用于橫截面積更大的圓棒), 提供了將末端淬火距離與不同規格圓棒內的等效硬度和淬冷烈度對應起來的一種實用方法。

鋼的硬度和淬透性 (中)(圖5)

▲圖(tu)19  直(zhi)徑為125~200(5~8in)的圓棒的等效末(mo)端淬火硬度 Jeh

與部位的對應關系

這樣,對于給定的鋼的末端淬火,如果已知橫截面尺寸和淬冷烈度,就可以估算整個橫截面上硬度的分布情況。這些圖對估算整個橫截面的強度特別有用,因為從一組不同直徑圓棒的末端淬火數據可以預測將來選用鋼材的整體硬度分布(在某種程度上也可以預測顯微組織)。圖18 就給出了這種方法的步驟。
    以格羅斯曼圖(上篇 圖15和圖16 c) 為基礎,拉蒙特(Lamont) 利用末端淬火距離(表2)對應等效冷卻速度的基本原理,繪制了各種橫截面的淬硬深度比例對應不同H值的圖。圖20所示,為將不同直徑的圓棒全部淬硬和淬硬到1/2 半徑的實例。

鋼的硬度和淬透性 (中)(圖6)

鋼的硬度和淬透性 (中)(圖7)

▲圖20 不同(tong)淬(cui)冷烈度的等(deng)效(xiao)末端淬(cui)火部位(wei)和50%馬氏體(ti)淬(cui)硬的圓棒直徑的拉蒙(meng)特圖

a)  圓(yuan)棒(bang)(bang)中心位(wei)置  b)圓(yuan)棒(bang)(bang)1/2半(ban)徑位(wei)置

拉蒙特還繪制了其他淬硬深度的類似關系圖,如圖21和圖22所示。需要注意的是,拉蒙特圖是以格羅斯曼的Jd與DI (圖16 c)的對應關系為基礎的,且后來由卡尼(Carney)予以完善。

鋼的硬度和淬透性 (中)(圖8)

鋼的硬度和淬透性 (中)(圖9)

▲圖(tu)21  圓(yuan)棒(bang)直徑比例(li)r/R=0.2-0.5的等效末端淬火(huo)位置的拉蒙特(te)圖(tu)

鋼的硬度和淬透性 (中)(圖10)

▲圖22  圓棒直徑比例r/R=0.6-0.9的等效末端淬火位置的拉蒙特圖

    卡尼繪制了改進的理想臨界直徑與末端淬火位置關系曲線(圖16 c) , 卡尼曲線針對隨尺寸和位置不同H的變化進行了修正。使用中等至良好的淬火油或水對圓棒或末端淬火試樣進行淬火,通過分析冷卻速度、圓棒淬火特性和末端淬火試樣,可以得到以50%、80%和95%馬氏體位置(替代冷卻速度)為基礎的更為可靠的曲線。例如,圖23所示為超過50%馬氏體部位的 H 值的變化。

鋼的硬度和淬透性 (中)(圖11)

▲圖(tu)23  從845℃(1550°F)淬(cui)火至半冷(leng)圓(yuan)棒(bang)中 H 值的變化

a) 水淬   b)油淬

    圖24所示為水淬和油淬各種圓棒和末端淬火試樣在相等冷卻時間下的對應曲線。

鋼的硬度和淬透性 (中)(圖12)

▲圖24  從845℃(1550°F)淬火,末端淬火距離與相同半(ban)冷溫度的圓棒位置的對應關系

a) 水淬   b)油淬

這些曲線與拉蒙特曲線不一致。拉蒙特曲線對應的淬透性是基于由格羅斯曼及其同事所做的 H 為常數的假設。得到的數據見表4 和圖25及圖26 由卡尼經驗關系式。
▼表4 末端淬火圓棒與各種油淬和水淬圓棒中心位置的對應關系

鋼的硬度和淬透性 (中)(圖13)

鋼的硬度和淬透性 (中)(圖14)

▲圖(tu)25  845℃(1550°F)水淬(cui)(cui)圓棒的等效(xiao)端淬(cui)(cui)位置

a)95%馬(ma)(ma)氏體(ti)  b)80%馬(ma)(ma)氏體(ti)  c)50%馬(ma)(ma)氏體(ti)

鋼的硬度和淬透性 (中)(圖15)

▲圖26  845℃(1550°F)油淬圓棒的等效端淬位置

a)95%馬氏體  b)80%馬氏體  c)50%馬氏體

對于鋼而言,大于50%馬氏體的等效位置的冷卻速度大致相同。對于大于50%馬氏體的位置,令人滿意的熱擴散系數是6. 4mm2/s (9. 9E-3in2 /s) 。對于小于50%馬氏體的位置,珠光體、鐵素體、貝氏體和馬氏體的不同擴散系數影響著冷卻速度。 
    通常的做法是使用書中給出的淬火冷卻介質的平均 H 值或淬火方法,如攪拌強烈、良好、中等和無攪拌,而不是實測 H 值。通過這種做法,對于一個給定的淬火過程,忽略了 H 值隨零件尺寸和部位的變化,很有可能造成在較小規格圓棒中預測的淬硬深度小于實際獲得的淬硬深度,在較大規格圓棒中預測的淬硬深度遠遠大于實際獲得的淬硬深度。當出現這些情況時,意味著使用給定淬火冷卻介質的一些熱處理工藝可以用于小截面的低合金鋼的淬火,而對于較大的截面應該使用具有深層硬化能力的合金鋼淬火。
六、其他淬透性試驗方法
    末端淬火試驗以及成為工業標準,因為它可以提供有價值的信息、相對經濟,并且有良好的再現性。末端淬火試驗提供了25~150mm (1~6in) 范圍內的鋼材理想臨界直徑(DI) 的有效數據,理想臨界直徑DI 可能小于25mm (1in) , 但是,通常要求靠近圓棒的淬火端使用維氏硬度值,可能比使用洛氏硬度測量設備更精密些。也可以采用其他淬透性試驗方法。
6.1 滲碳淬透性試驗
    經常需要確定滲碳鋼高碳層區域的淬透性。這對控制滲碳和淬火工藝很重要,并且決定了一種鋼滿足滿足滲碳零件的顯微組織和硬化層深度技術條件的能力。參見圖27 。

鋼的硬度和淬透性 (中)(圖16)

▲圖27  滲碳(tan)鋼(5120)的末端淬火曲線

注:圓棒正火925℃×20min, 固體滲碳925℃×9h直接淬火,  奧氏體晶粒度(du)6~8級

一般來說,心部淬透性足夠,并不能保證硬化層淬透性足夠,尤其是當滲碳之后要求重新加熱淬火時,不如在滲碳爐中直接淬火。導致這種結果的原因有兩個:首先相同合金成分含量對不同含碳量的合金鋼的淬透性具有不同的作用;其次,淬火前高碳層區域中的合金碳化物并不總是全部溶解,正如通常在低碳心部區域的奧氏體得到的那樣。于是,當對于一個特定應用必須選擇一種滲碳鋼時,硬化層淬透性的直接測量就變得很重要。硬化層淬透性的測量是按照以下方法完成的。將一根標準的末端淬火試棒在925℃下固體滲碳9小時并以常規方式末端淬火,將另一根對比試棒在相同的滲碳罐中同時滲碳用于確定滲碳深度。在試棒上做連續滲層剝層化學成分分析,以確定各深度上的含碳量。繪制滲碳層曲線后,便可確定末端淬火試棒上各種含碳量的深度假(jia)設末(mo)端淬火試樣(yang)上(shang)含碳(tan)量的(de)(de)分(fen)布與對比試棒是相同的(de)(de),在末(mo)端淬火試棒的(de)(de)各種深度(du)(通常碳(tan)的(de)(de)質量分(fen)數(shu)是1. 1%、1. 0%、0. 9%或0. 8%, 在某(mou)此(ci)情(qing)況(kuang)下低至0. 6%)上(shang)小心(xin)地(di)磨出(chu)縱向平面(mian),并在這此(ci)含碳(tan)量的(de)(de)縱向磨面(mian)上(shang)通過(guo)橫截面(mian)硬度(du)確定淬透性(xing)。

鋼的硬度和淬透性 (中)(圖17)

    在(zai)磨(mo)削時(shi),必須小心操作以(yi)(yi)避免過(guo)熱(re)和回火(huo),并且(qie)必須保(bao)(bao)證(zheng)在(zai)磨(mo)面(mian)的(de)正(zheng)中心進行硬(ying)(ying)度(du)(du)(du)(du)測(ce)量(liang),以(yi)(yi)確保(bao)(bao)硬(ying)(ying)度(du)(du)(du)(du)值對應于(yu)一個(ge)單一的(de)碳含量(liang)。使用(yong)洛(luo)氏(shi)(shi)硬(ying)(ying)度(du)(du)(du)(du)A標(biao)尺(chi)比洛(luo)氏(shi)(shi)硬(ying)(ying)度(du)(du)(du)(du)C標(biao)尺(chi)好(hao),因為(wei)這(zhe)樣(yang)(yang)可把壓(ya)頭穿透(tou)到(dao)軟表面(mian)層(ceng)的(de)深度(du)(du)(du)(du)降到(dao)最低程度(du)(du)(du)(du)。為(wei)了繪圖,應再(zai)將洛(luo)氏(shi)(shi)硬(ying)(ying)度(du)(du)(du)(du)A標(biao)尺(chi)轉化成洛(luo)氏(shi)(shi)硬(ying)(ying)度(du)(du)(du)(du)C標(biao)尺(chi)。在(zai)滲碳試樣(yang)(yang)的(de)較(jiao)高含碳量(liang)層(ceng),殘留奧(ao)氏(shi)(shi)體(ti)的(de)存在(zai)會影(ying)響硬(ying)(ying)度(du)(du)(du)(du)。因此,通常(chang)需要通過(guo)金相(xiang)拋(pao)光(guang)和磨(mo)面(mian)腐蝕來 評(ping)價(jia)顯(xian)微組織(zhi)和深度(du)(du)(du)(du)之間的(de)相(xiang)互關系(xi)。那么,末端淬(cui)(cui)火(huo)距(ju)離(li)可以(yi)(yi)用(yong)于(yu)測(ce)量(liang)淬(cui)(cui)透(tou)性(xing)選(xuan)定非馬氏(shi)(shi)體(ti)相(xiang)變組織(zhi)的(de)某種等級(ji)作為(wei)末端淬(cui)(cui)火(huo)距(ju)離(li)。

    已經(jing)過(guo)滲碳處理,再在925℃ (1700°F) 以下重新(xin)加熱淬(cui)火的(de)(de)鋼(gang)材,如8620、4817和9310鋼(gang),也可(ke)以采(cai)用這(zhe)種技術的(de)(de)改進(jin)形式確(que)定其硬化層(ceng)淬(cui)透(tou)(tou)性(xing)。末端(duan)淬(cui)火滲碳試(shi)(shi)樣和比較梯(ti)度圓棒在滲碳溫度下一起油淬(cui),然后(hou)在保護氣氛(fen)爐中重新(xin)加熱到要求的(de)(de)溫度并(bing)保溫55~60min, 同(tong)時應確(que)保至少(shao)有30~35min的(de)(de)透(tou)(tou)燒時間(jian)。然后(hou)對(dui)淬(cui)透(tou)(tou)性(xing)試(shi)(shi)樣進(jin)行(xing)末端(duan)淬(cui)火,對(dui)含碳量梯(ti)度圓棒進(jin)行(xing)油淬(cui),為(wei)了做先(xian)前(qian)描述的(de)(de)含碳量梯(ti)度分(fen)析,以及便于機加工而進(jin)行(xing)回(hui)火。為(wei)完成滲碳層(ceng)淬(cui)透(tou)(tou)性(xing)試(shi)(shi)驗,至少(shao)需(xu)要兩個試(shi)(shi)樣。在SAE J406 標準中對(dui)硬化層(ceng)淬(cui)透(tou)(tou)性(xing)測(ce)量技術做了更詳(xiang)細的(de)(de)描述。

6.2  氣冷淬透性試驗

    當(dang)在鋼(gang)中施加一(yi)個比(bi)在末端淬(cui)(cui)火(huo)試(shi)棒(bang)上慢的(de)(de)(de)(de)冷卻速度(du)(du)時,可以用來評價具有(you)很(hen)高淬(cui)(cui)透性的(de)(de)(de)(de)鋼(gang)的(de)(de)(de)(de)淬(cui)(cui)火(huo)情況。具體方法是(shi)(shi),Φ25. 4mm (1in) 的(de)(de)(de)(de)試(shi)棒(bang)完(wan)成奧(ao)氏(shi)體化后,其100mm(4in)長(chang)度(du)(du),放在夾具上,暴露(lu)于(yu)靜止(zhi)的(de)(de)(de)(de)空氣中冷卻進(jin)行相變,這個冷卻過程是(shi)(shi)很(hen)慢的(de)(de)(de)(de),并且冷卻速度(du)(du)會沿著(zhu)試(shi)棒(bang)的(de)(de)(de)(de)長(chang)度(du)(du)方向(xiang)降(jiang)低。然后,沿著(zhu)試(shi)棒(bang)長(chang)度(du)(du)方向(xiang)間隔(ge)一(yi)定(ding)距離測定(ding)硬度(du)(du),繪制硬度(du)(du)曲線。

6.3 低淬透性鋼

    在(zai)碳鋼(gang)或低合金鋼(gang)中即(ji)使在(zai)標準試(shi)棒上1.6mm(1/16in)的位置,冷卻(que)速度(du)都不(bu)(bu)足夠(gou)快以使其淬(cui)透(tou)(tou)。這些(xie)鋼(gang),端(duan)淬(cui)試(shi)驗(yan)是無效的,適用(yong)于低淬(cui)透(tou)(tou)性鋼(gang)的試(shi)驗(yan)方法(fa)熱鹽水(shui)(shui)試(shi)驗(yan)和SAC(surface-area-center)試(shi)驗(yan)法(fa)。熱鹽水(shui)(shui)法(fa)是由(you)格蘭奇(Grange)提出的。他(ta)是將試(shi)棒在(zai)一系列不(bu)(bu)同溫(wen)度(du)的鹽水(shui)(shui)中淬(cui)火如圖28所(suo)示 。由(you)此得到的硬度(du),提供(gong)了一種對(dui)淬(cui)透(tou)(tou)性非(fei)常(chang)敏感的實驗(yan)方法(fa)。

鋼的硬度和淬透性 (中)(圖18)

▲圖28  鹽水淬(cui)透性試驗的典型結(jie)果(guo)

注(zhu):C0.18%  Mn0.81%  Si0.17%  Ni1.08%,

奧氏(shi)體(ti)化溫度(du)845℃。晶(jing)粒度(du)5-7級

SAC試驗法是將Φ25.4mm(1in)的(de)試棒在(zai)空(kong)氣中(zhong)(zhong)正火,然后加熱至(zhi)奧氏體水淬。從(cong)100mm(4in)的(de)長度處切下一個(ge)試樣(yang)測(ce)量(liang)硬度在(zai)表(biao)面、中(zhong)(zhong)心(xin)、以及從(cong)表(biao)面到(dao)中(zhong)(zhong)心(xin)以1.6mm(1/16in)為(wei)間距測(ce)量(liang)硬度。然后根據圖(tu)29 中(zhong)(zhong)的(de)公式計算區域硬度。

鋼的硬度和淬透性 (中)(圖19)

▲圖29 表面(mian)硬度-面(mian)積(ji)(ji)-中心硬度面(mian)積(ji)(ji)估算圖

由此產生(sheng)了三個位(wei)置(zhi)的硬(ying)度數值,例如(ru),SACNo. 63-52-42表示表面硬(ying)度為(wei)(wei)63HRC, 區域硬(ying)度為(wei)(wei)52HRC、心部硬(ying)度為(wei)(wei)42HRC.在SAE J406標準中有詳細的試驗方(fang)法(fa)。

七、喬米尼末端淬火試驗等效圖表

鋼的硬度和淬透性 (中)(圖20)

    一旦確定了末端淬火曲線,就必須估算淬火零件的臨界區域冷卻速度。對于要求進行熱處理的零件,其任何一種鋼材的適用性度量標準,是它的淬透性與零件熱處理時的臨界截面之間的關系。術語中提到的臨界截面,定義為零件工作應力最高的截面,因此,要求該截面的力學性能最高。例如,如果這個零件是鍛造毛坯,臨界截面直徑為64mm (21/2in) , 后來加工到直徑為50mm (2in) , 并且成品零件必須在3/4半徑(即深度為6. 4mm, 或者1/4in) 上淬火,那么,鋼的淬透性必須保證鍛造毛坯淬硬深度達到13mm (1/2in) 的程度。
    可用一些圖表來確定給定尺寸和結構的零件內部的末端淬火等效冷卻速度。拉蒙特曲線(圖20~圖22) 以及圖18和圖19中的圖表,是典型的用來確定試棒末端淬火等效冷卻速度的圖表。基本上,有兩種確定末端淬火距離的方法: 
    方法1: 根據末端淬火距離與各種末端淬火形狀的等效硬度(Jeh) 位置的關系來確定。
    方法2: 根據末端淬火冷卻速度數據(Jec) 與各種末端淬火零件形狀的等效冷卻速度位置來確定。
    方法1是更精確的和首選的方法,因為在實際生產中已經發現,當冷卻速度相同時,在某種程度上,大橫截面的硬度比小橫截面的低些,包括末端淬火或氣淬淬透性試棒。這種差異是由以下兩個原因造成的:
     1) 大的零件中較大的收縮應力促進了奧氏體相變。
     2) 淬冷烈度 H 隨著橫截面尺寸的增加而降低。而且采用冷卻速度的方法(方法2) 很難準確地確定冷卻速度。然而,對于一個生產中的零件,當試圖建立所需淬透性或者淬火條件之間的關系時,沿著末端淬火試棒(Jec) 的等效冷卻條件與在不同淬火冷卻介質中產生的形狀之間的相互關系也是極其有用的。建立冷卻速度的一種方法是確定末端淬火等效距離,如圖30 所示。

鋼的硬度和淬透性 (中)(圖21)

▲圖30  末(mo)端淬火等效(xiao)冷卻條件(Jeq)的確(que)定

注:確定零件上重要部位的淬火冷卻速度的步驟:
1) 用相同爐號的鋼材制作至少兩個試樣件,并且盡可能地以接近推薦的生產方法制作。如果不能用模鍛制作,則采用鍛造。
2) 將要淬火的加工零件樣件,采用鍍銅或者其他措施防止零件滲碳或脫碳。試件的整體熱處理時間大約按照成品件的時間。淬火部位No. 1采用這種方式,盡可能地接近實際生產條件(不回火)。
3) 切削、磨削和拋光淬火部位 No. 1 淬硬截面,硬度讀數可以按照上圖所示例子測試。
4) 在距表面以下D處相對應的 No. 2位置取樣加工末端淬火試樣。末端淬火試樣的淬火溫度與部位 No. 1 的相同。實例試驗結果如下: 
至末端淬火距離(1/16in)
        1     2    3    4    5     6     8
硬度 56  55  55  54   52   48   43    (HRC)
5) 通過對第3) 步參考位置(42. 7HRC) 的硬度與末端淬火的硬度結果(第4) 步)進行比較,可以看到這個硬度在末端淬火曲線8/16in的位置上出現。參考點的淬火冷卻速度大約等于末端淬火距離8/16in處的速度。
6) 隨后對大量不同爐號的生產零件進行試驗,確認其冷卻速度,然后調整材料或熱處理,或者兩者都調整,以便更精確地達到工程要求。

7.1 末端(duan)淬火等效(xiao)硬度法

    確定末端淬火(huo)等效硬度(du)(Jeh)的方法(fa)如圖31所示。

鋼的硬度和淬透性 (中)(圖22)
▲圖31 末端淬火等效厚度(Jeh)的判斷標準
a)零件在一定條件下熱處理后的硬度
b)相同鋼種的末端淬火試棒上的硬度
c)橫截面的等效淬火冷卻速度
基本步驟如下: 
    1)選擇淬火和淬火生產設備容易實現的淬火條件。
    2)選擇一種低淬透性鋼,如8620、4023或1040;然后制成一定數量的零件,如齒輪、軸承、軸等。
    3)在非滲碳狀態下,對這些零件進行批量淬火。
    4)從表面到心部測量硬度,獲得所有臨界位置。
    5) 比(bi)較這些位(wei)置上(shang)的測(ce)量硬度值與末端淬火試棒上某些末端淬火(Jeh) 位置處獲(huo)得的等效硬度值。末端淬火(huo)試棒應是由(you)同(tong)(tong)爐(lu)號(hao)鋼(gang)材,在同(tong)(tong)樣淬火(huo)條件下(xia)制造獲(huo)得的。
    6)確定淬火生產的零件上每一個相等硬度冷卻條件的部位,Jeh 值是按照這種方式定義獲得的。
    7)最后,從可用的末端淬火數據中選擇一種鋼材,使得在成品零件上每一個臨界Jeh 部位都能得到所需的硬度。
    圖18 是圓棒等效硬度標準的另一個例子,圖中介紹了操作步驟,類似的圖表也適用于其他產品形狀。
  (1)矩形或六邊形棒或板 除了關鍵部位和邊緣以外,圓棒的尺寸關系也可以用于矩形和六邊形橫截面。圓棒相關圖(圖18、圖19) , 以及圖32 和圖33 可以用于寬度與厚度之比(W/T) 小4的矩形棒。但是,當寬度與厚度的比值為1.4時,則應視其為等效的圓棒。與棒狀零件相比,較大平板零件的冷卻速度很慢。圖34、圖35 中冷卻速度之間的關系適用于這些形狀。
   (2)管狀零件 對空心圓柱截面使用末端淬火淬透性數據選擇鋼種,主要是根據類似零件的生產經驗。在管狀截面與圓棒等效上,以及長、空心圓柱體的無因次溫度-時間圖表開發上已經取得了一些進展。

    霍(huo)洛蒙(Hollomon) 和(he)齊納(Zener) 通過計算(suan)實心(xin)(xin)圓柱(zhu)體鋼件的直徑得出結論:在給定的淬火冷卻介質(zhi)中(zhong)淬火時,可以預測實心(xin)(xin)圓柱(zhu)體的心(xin)(xin)部硬度(du)與(yu)在相同淬火冷卻介質(zhi)中(zhong)淬火的空心(xin)(xin)圓柱(zhu)體壁(bi)(bi)上的最(zui)低硬度(du)相同。用(yong)雙倍管壁(bi)(bi)厚度(du)作為一個等效實心(xin)(xin)棒直徑的經驗法則是一個令人滿意的初步近似值(zhi)。

鋼的硬度和淬透性 (中)(圖23)
▲圖32  用油、水和鹽水的末端淬火試棒的等效冷卻速度(Jec)之間的關系
a)、b)、c)在非氧化保護氣氛中奧氏體化加熱
d)、e)、f)在空氣爐中奧氏體化加熱
1-鹽水,強烈攪拌  2-水,流速60m/min  3-靜止水 
4-油、流速為230m/min  5-油,流速為60m/min  
6-油,流速為15m/min  7-靜止油

鋼的硬度和淬透性 (中)(圖24)

▲圖33  在200℃中淬火的末端淬火試棒的等效冷卻速度(Jec)之間的關系
1-流速41m/min  2-流速11m/min  3-流速1,5m/min 

鋼的硬度和淬透性 (中)(圖25)

▲圖(tu)34  末端淬(cui)火(huo)試樣和淬(cui)火(huo)平板(ban)等效冷(leng)卻速度之間的(de)關(guan)系

鋼的硬度和淬透性 (中)(圖26)

▲圖35  在(zai)各(ge)種淬(cui)冷烈度下淬(cui)火時Jec和平板心部冷卻(que)速度之間的關系(xi)

7.2  等效冷卻速度

    根據淬(cui)(cui)火冷(leng)卻(que)介質(zhi)和(he)(he)零件橫截面可以(yi)確定冷(leng)卻(que)速(su)(su)(su)度(du)(du)。圖(tu)36 所示(shi)(shi)為(wei)沿(yan)著(zhu)末(mo)端(duan)(duan)淬(cui)(cui)火試(shi)樣(yang)和(he)(he)Φ100mm (Φ4in) 的(de)(de)圓棒(bang)(bang)在水淬(cui)(cui)、油(you)淬(cui)(cui),攪(jiao)拌(ban)速(su)(su)(su)度(du)(du)為(wei)60m/min的(de)(de)條(tiao)件下,4個部(bu)(bu)(bu)位冷(leng)卻(que)速(su)(su)(su)度(du)(du)之間的(de)(de)關(guan)系。圖(tu)中示(shi)(shi)出了直徑范圍為(wei)13~100mm(1/2~4in) 時,表面、3/4半(ban)(ban)徑、1/2半(ban)(ban)徑和(he)(he)心(xin)部(bu)(bu)(bu)的(de)(de)冷(leng)卻(que)速(su)(su)(su)度(du)(du)與末(mo)端(duan)(duan)淬(cui)(cui)火圓棒(bang)(bang)的(de)(de)等(deng)(deng)效距(ju)離(li)之間的(de)(de)關(guan)系。因此,Φ50mm (Φ2in) 圓棒(bang)(bang)水淬(cui)(cui)時心(xin)部(bu)(bu)(bu)的(de)(de)冷(leng)卻(que)速(su)(su)(su)度(du)(du)大致等(deng)(deng)效于(yu)6/16in 末(mo)端(duan)(duan)淬(cui)(cui)火距(ju)離(li)處的(de)(de)數值;Φ50mm (Φ2in) 圓棒(bang)(bang)油(you)淬(cui)(cui)時心(xin)部(bu)(bu)(bu)的(de)(de)冷(leng)卻(que)速(su)(su)(su)度(du)(du)大致等(deng)(deng)效于(yu)末(mo)端(duan)(duan)淬(cui)(cui)火距(ju)離(li)6/16in處的(de)(de)冷(leng)卻(que)速(su)(su)(su)度(du)(du)。圓棒(bang)(bang)與其(qi)他(ta)簡單幾何(he)形狀,如方形、板形零件之間的(de)(de)關(guan)系如圖(tu)37 所示(shi)(shi)。

鋼的硬度和淬透性 (中)(圖27)

鋼的硬度和淬透性 (中)(圖28)

▲圖36  圓棒(bang)水淬(cui)a)和油淬(cui)b)時等(deng)(deng)效冷卻(que)速度以(yi)及末端(duan)淬(cui)火(huo)和無氧化淬(cui)火(huo)圓棒(bang)中 等(deng)(deng)效冷卻(que)速度之間的(de)關(guan)系(輕微攪拌60m/min)

鋼的硬度和淬透性 (中)(圖29)

▲圖37  整體淬(cui)火圓棒直徑與整體淬(cui)火板材和方(fang)鋼(gang)之間的(de)關系

八、淬透性要(yao)求的確(que)定

鋼的硬度和淬透性 (中)(圖30)

    確定(ding)具(ju)有合適淬透性的鋼(gang)種需(xu)要的基本信息包括:

    1) 產(chan)生最佳抗力的顯微組織的最終回火硬度(du)(du)之前要(yao)達到所要(yao)求的硬度(du)(du)。

    2) 這個硬度必須延伸到表面以(yi)下(xia)一定的深度。

    3) 應(ying)使用可獲(huo)得(de)淬(cui)硬深度(du)的淬(cui)火(huo)介質。

    對于一個(ge)具體的(de)(de)應用的(de)(de)零件,為(wei)了(le)達到(dao)要(yao)(yao)求(qiu)的(de)(de)硬度,首先需(xu)要(yao)(yao)確定(ding)含碳量。預期的(de)(de)淬火硬度是回火后所要(yao)(yao)求(qiu)硬度的(de)(de)函數(圖38a)。如(ru)圖38b 所示。

PS:這張圖(tu)具有很廣泛(fan)的(de)適用價值,可(ke)以(yi)判斷許多(duo)熱(re)處理(li)技術要求的(de)合理(li)性(xing),以(yi)及特定條件下(xia)的(de)熱(re)處理(li)結果。

鋼的硬度和淬透性 (中)(圖31)
鋼的硬度和淬透性 (中)(圖32)
▲圖38 根據硬度選擇鋼種的曲線
a)最小淬火硬度對應各種回火后的最終硬度
b)淬火硬度取決于馬氏體含量和含碳量

選擇的(de)(de)(de)(de)(de)鋼種可能(neng)會產生小于90%馬氏(shi)體(ti)含量的(de)(de)(de)(de)(de)硬(ying)度。為(wei)了確(que)保得(de)到最佳性能(neng),常(chang)規做法是(shi)選擇含碳量最低的(de)(de)(de)(de)(de)鋼,使用(yong)合適的(de)(de)(de)(de)(de)淬(cui)火冷卻(que)介(jie)質(或者配制(zhi)適用(yong)的(de)(de)(de)(de)(de)淬(cui)火冷卻(que)介(jie)質), 將會得(de)到所(suo)需(xu)要的(de)(de)(de)(de)(de)淬(cui)火硬(ying)度。按(an)照這(zhe)個(ge)步驟,具有所(suo)需(xu)硬(ying)度的(de)(de)(de)(de)(de)結構應(ying)該完全(quan)淬(cui)硬(ying),即應(ying)該含有大(da)于90%的(de)(de)(de)(de)(de)馬氏(shi)體(ti),這(zhe)是(shi)完全(quan)淬(cui)硬(ying)的(de)(de)(de)(de)(de)常(chang)用(yong)定義(yi),并(bing)且(qie)是(shi)SAE (美國汽(qi)車(che)工程師協會)所(suo)采用(yong)的(de)(de)(de)(de)(de)定義(yi)。對于服役中承受彎曲載荷的(de)(de)(de)(de)(de)零件,認為(wei)在3/4半(ban)徑(jing)處應(ying)該達到90%馬氏(shi)體(ti)組織。為(wei)了確(que)保達到這(zhe)個(ge)要求(qiu),規定了 1/2半(ban)徑(jing)處的(de)(de)(de)(de)(de)硬(ying)度值。

8.1 淬硬深度 
    零件淬硬后的馬氏體深度和含量可能影響其適用性,它總是影響所需要的淬透性并因此而影響成本。在彎曲狀下要求應力很低的零件,在最終加工后,零件的 3/4 半徑處淬硬到80%馬氏體組織可能已經足夠了,對于另一些零件,所需的淬硬深度甚至更小。后者要求的淬硬深度主要包括為低載荷撓度設計的零件,其在外部區域可能僅承受中等應力的載荷。相對應地,一些主要承受拉應力的零件和其他要求在高硬度下使用的零件,如各種型號的彈簧,通常是幾乎淬硬整個截面。汽車鋼板彈簧在載荷方向上,簧板設計成薄截面系數。允許撓度大,橫截面的大部分處于高應力狀態。
    通常。淬火深度不應超過支承載荷提供強度所需的表面以下的規定深度,因此,僅僅為抵抗表面磨損、單純的彎曲或者滾動接觸而設計的零件,要求整個截面淬硬導致的淬透性成本常常是不合適的。當服役條件要求硬度必須大于80%馬氏體組織時,由于要求的馬氏體含量增加,能夠淬硬到之前深度的截面尺寸迅速減小。例如,假設在8640H 鋼中,要求得到95%的馬氏體(最小硬度為51HRC) ,那么,在油中淬火到心部淬透的最大截面尺寸將為16mm (5/8in) ,25mm (1in) 的截面僅3/4半徑能夠淬透。再者,以95%馬氏體為基準,標準 4340H鋼的最大淬透深度為51mm (2in) 截面的心部;以80%馬氏體(45HRC) 為基準,在油中淬火時,92mm (35/8in) 的圓棒心部會淬透。

    上(shang)述(shu)例(li)子說(shuo)明要(yao)求(qiu)淬透很(hen)(hen)深或者(zhe)馬(ma)氏體含量(liang)很(hen)(hen)高時,需要(yao)在工(gong)藝上(shang)進行調整。當(dang)這些要(yao)求(qiu)并(bing)不全部合理時,結(jie)果是(shi)超過技術條件的(de)要(yao)求(qiu)而導致(zhi)成(cheng)本升高,從而導致(zhi)畸變和淬火開裂的(de)可(ke)能性(xing)增加。

鋼的硬度和淬透性 (中)(圖33)

8.2 淬火冷卻介質 

    在(zai)熱處理(li)工藝中(zhong),淬(cui)火冷卻(que)介(jie)質的冷卻(que)能(neng)力是一個至關重要(yao)的因(yin)(yin)素,因(yin)(yin)為(wei)它的貢獻(xian),對熱處理(li)零件和截面(mian)淬(cui)透性要(yao)求可達到最低程度(du)。冷卻(que)能(neng)力作為(wei)一種淬(cui)冷烈度(du)的測(ce)量方(fang)法(fa),可以隨下列因(yin)(yin)素在(zai)一個相當寬的范圍(wei)內(nei)變化(hua):

    1) 選擇一種特(te)定的淬火(huo)冷卻(que)介質。

    2) 攪(jiao)拌的控制(zhi)。

    3) 提高淬(cui)火冷卻介質的(de)冷卻能力(li)的(de)添加(jia)劑。

    任何變量或者所有這些變量可以用來增加淬冷
烈度,并具有以下優點:
    1) 允許使用較便宜的(合金含量較低)低淬透性鋼。
    2) 使已選鋼材的性能最優化。
    3) 允許使用比較便宜的淬火冷卻介質。
    4) 提高生產率,并且由于周期縮短和生產率提高,因此降低了生產成本。
    在實踐中,還有其他兩個可以改善淬火冷卻介質和淬冷烈度的選擇:所允許的畸變量和淬火開裂敏感性。
    一般來說,較劇烈的淬火冷卻介質和對稱性較小的淬火零件,淬火的尺寸和形狀變化越大,導致淬火開裂的風險就越大。因此,盡管水淬比油淬成本低,而且,要求水淬的鋼比要求油淬的鋼便宜,重要的是必須仔細審核被淬火的零件,以確定由于水淬導致的畸變量和開裂的可能性是否允許采取成本較低的水淬。油、鹽浴和合成水性聚合物淬火冷卻介質是替代產品,但是使用它們時,常常要求選擇合金含量較高的鋼來滿足淬透性要求。
    對于給定截面的零件而言,淬火冷卻介質和鋼種的選擇原則是,鋼種應該具有不超過所選擇介質淬冷烈度的最小要求淬透性。該鋼種也可能含有可以達到硬度和強度性能要求的最低含碳量。這個原則是基于這樣的事實:鋼的淬火開裂敏感性隨著Ms溫度的降低而增加,或者說隨含碳量的增加而增加。
    表5 列出了常用淬火冷卻介質和淬火條件的典型淬冷烈度(H值)。
▼表5  常用淬火介質和淬火條件的典型冷卻烈度(H)

鋼的硬度和淬透性 (中)(圖34)

表中數據為不含添加劑的介質。可以通過像在熱鹽浴中添加水、在油中加入專用添加劑、在水中加人聚亞烷基二醇(聚合物)等措施一樣,改善冷卻介質的冷卻能力。聚合物水溶液混合物,如聚丙烯酰胺凝膠、聚乙烯吡咯烷酮、聚乙烯醇等可以通過簡單地調整水中乙二醇(聚合物)的濃度來制得從油到水的淬冷烈度范圍。同時,它們對環境無污染和損害,對工作環境無不良影響。應該經常以一定時間間隔測試這些介質的淬冷烈度,因為工件的帶出液體和熱分解會影響它們的火效率。
九、影(ying)響淬透性的因(yin)素(su)

鋼的硬度和淬透性 (中)(圖35)

    如前所述,鋼的淬透性取決于奧氏體化溫度下的化學成分(碳和合金含量)以及奧氏體晶粒度和其他參數,如奧氏體化溫度、保溫時間和預備熱處理組織。含碳量影響硬度,并且會降低馬氏體形成的臨界冷卻速度,從而也影響著淬透性(圖39) 。碳鋼的淬透性隨奧氏體晶粒的增大而提高,隨著含碳量的增加(見圖40) , 奧氏體晶粒度對淬透性的影響將更加明顯。

鋼的硬度和淬透性 (中)(圖36)

▲圖39  含碳量對純鐵冷(leng)卻(que)速度的影響

鋼的硬度和淬透性 (中)(圖37)

▲圖40  純鐵淬透性與含碳量(liang)和奧氏體晶粒度的關系

由于鋼的韌性隨晶粒的增大而降低,因此晶粒度的增大有一個極限。另外,晶粒度的增大也提高了淬火開裂的風險。當產生淬火裂紋的傾向很小(截面厚度沒有突變), 并且在工程上允許時,使用粗晶粒鋼而不是細晶粒鋼或更昂貴的合金鋼來獲得淬透性,有時更實際一些。然而,使用粗晶粒鋼常常會造成缺口韌性上的一些犧牲。

    在合(he)金化(hua)方(fang)面,任何(he)一種可在奧(ao)氏體(ti)中溶解的元素(除(chu)鈷外), 在奧(ao)氏體(ti)分(fen)(fen)解時,都(dou)延緩擴散(san)產物的形核(he)和長大,除(chu)了在淬(cui)火(huo)瞬間(jian)奧(ao)氏體(ti)的化(hua)學成(cheng)分(fen)(fen)可和化(hua)學分(fen)(fen)析所確定的成(cheng)分(fen)(fen)結(jie)果(guo)不一樣的情況以外。例如,如果(guo)在奧(ao)氏體(ti)化(hua)溫度下碳(tan)化(hua)物沒有

完全溶(rong)解,則一些碳(tan)(tan)將仍保留在碳(tan)(tan)化(hua)物(wu)(wu)中,并且不對馬(ma)氏體(ti)硬化(hua)。因此,未溶(rong)解碳(tan)(tan)化(hua)物(wu)(wu)將大幅降低淬(cui)透性。這(zhe)在高碳(tan)(tan)鍋(碳(tan)(tan)的質量(liang)分數為(wei)0. 50%-1. 10%) 和合金滲碳(tan)(tan)鋼(gang)中尤其(qi)重要,因為(wei)在奧氏體(ti)化(hua)溫(wen)度下,這(zhe)些鋼(gang)中會含有過(guo)剩碳(tan)(tan)化(hua)物(wu)(wu)。對于同一

爐號的鋼,采用鑄造和熱軋時也可能產生局部的或周期性的不均勾,這也使淬透性的測量進一步復雜化。
    通常,可以根據合金元素是奧氏體穩定化元素(如錳、鎳和銅), 或者鐵素體穩定化(如沿γ晶界形成鐵素體)元素(如鉬、硅、鈦、釩、鋯、鎢和鈮)對其進行分類。為增加淬透性,要求添加的鐵素體穩定化元素比奧氏體穩定化元素少得多。因為許多鐵素體穩定化元素在奧氏體中碳化物析出的相互競爭過程中會消耗添加的碳和合金,從而使淬透性降低。析出物也會造成品粒細化,從而進一步降低淬透性。
    在合金化方面,在給定的含碳量條件下,增加淬透性的成本最低的方式是增加錳的含量。鉻和鉬也能增加淬透性,并且也是增加淬透性的最經濟的元素之一。鎳是單位成本最高的元素,但是當韌性為首要考慮因素時,應使用鎳。
    硼可顯著提高淬透性,且隨著鋼中含碳量的變化效果顯著。硼對淬透性的最大影響是僅可在完全脫氧的(鋁鎮靜的)鋼中獲得。硼對淬透性的影響在以下幾個方面是特有的:
    1) 很少量的硼(質量分數約為0. 001%,10ppm) 對淬透性就有很大的影響。
    2) 硼對高碳鋼淬透性的影響比低碳鋼小得多。
    3) 氮、脫氧劑影響硼的有效性。
    4) 高溫處理會降低硼對淬透性的影響。
    在滲碳鋼中,如果滲碳氣氛中存在大量的氮,則硼對滲碳層淬透性的影響可能會完全喪失。硼的成本通常比其他有大致相同淬透性效果的合金化元素低得多。
    淬透性也隨著合金化元素之間的相互影響而變化。當合金化元素組合使用代替單一元素時,可能產生明顯的相互促進作用。一些已知的增效組合的例子有鎳+錳、鉬+鎳以及硅+錳。表6 列出了合金元素對鋼的淬透性和回火的影響(基于合金元素對回火的影響,因為大部分淬火鋼需要回火)。
▼表6  合金元素對鋼的淬透性和回火的影響

鋼的硬度和淬透性 (中)(圖38)

鋼的硬度和淬透性 (中)(圖39)

未(wei)完待續
     文章來源:節選自美國(guo)熱處(chu)理手冊A卷

本(ben)站(zhan)所(suo)有(you)(you)文章、數據、圖片均(jun)來自互聯(lian)網(wang),一切版權均(jun)歸源(yuan)網(wang)站(zhan)或源(yuan)作者所(suo)有(you)(you)。

如果侵犯了你的權益請來信告知我們刪除。郵箱:steeltube@foxmail.com

標簽: 硬度 淬透性
會員頭像

董敬松

文章詳情頁底部廣告